Cross Language Text Categorization by Acquiring Multilingual Domain Models from Comparable Corpora

نویسندگان

  • Alfio Gliozzo
  • Carlo Strapparava
چکیده

In a multilingual scenario, the classical monolingual text categorization problem can be reformulated as a cross language TC task, in which we have to cope with two or more languages (e.g. English and Italian). In this setting, the system is trained using labeled examples in a source language (e.g. English), and it classifies documents in a different target language (e.g. Italian). In this paper we propose a novel approach to solve the cross language text categorization problem based on acquiring Multilingual Domain Models from comparable corpora in a totally unsupervised way and without using any external knowledge source (e.g. bilingual dictionaries). These Multilingual Domain Models are exploited to define a generalized similarity function (i.e. a kernel function) among documents in different languages, which is used inside a Support Vector Machines classification framework. The results show that our approach is a feasible and cheap solution that largely outperforms a baseline.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploiting Comparable Corpora and Bilingual Dictionaries for Cross-Language Text Categorization

Cross-language Text Categorization is the task of assigning semantic classes to documents written in a target language (e.g. English) while the system is trained using labeled documents in a source language (e.g. Italian). In this work we present many solutions according to the availability of bilingual resources, and we show that it is possible to deal with the problem even when no such resour...

متن کامل

Automatic processing of multilingual medical terminology: applications to thesaurus enrichment and cross-language information retrieval

OBJECTIVES We present in this article experiments on multi-language information extraction and access in the medical domain. For such applications, multilingual terminology plays a crucial role when working on specialized languages and specific domains. MATERIAL AND METHODS We propose firstly a method for enriching multilingual thesauri which extracts new terms from parallel corpora, and seco...

متن کامل

The Effects of the Relevance-Based Superimposition Model in Cross-Language Information Retrieval

We propose a cross-language information retrieval method that is based on document feature modification and query translation using a dictionary extracted from comparable corpora. In this paper, we show the language-independent effectiveness of our document feature modification model for dealing with semantic ambiguity, and demonstrate the practicality of the proposed method for extracting mult...

متن کامل

Mapping WordNet Domains, WordNet Topics and Wikipedia Categories to Generate Multilingual Domain Specific Resources

In this paper we present the mapping between WordNet domains and WordNet topics, and the emergent Wikipedia categories. This mapping leads to a coarse alignment between WordNet and Wikipedia, useful for producing domain-specific and multilingual corpora. Multilinguality is achieved through the cross-language links between Wikipedia categories. Research in word-sense disambiguation has shown tha...

متن کامل

Knowledge Transfer across Multilingual Corpora via Latent Topics

This paper explores bridging the content of two different languages via latent topics. Specifically, we propose a unified probabilistic model to simultaneously model latent topics from bilingual corpora that discuss comparable content and use the topics as features in a cross-lingual, dictionary-less text categorization task. Experimental results on multilingual Wikipedia data show that the pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005